
Distributed Synchronization and Regularity
Gregor V. Bochmann
Ddpartement d'Informatique et de Recherche Op&ationnelle,
Universitd de Montreal, Canada

The communication delays between the different com-
ponents of a distributed system often create problems for the
logical consistency of the overall system behaviour. The ideas
presented in this paper suggest to eliminate these problems
by observing certain regularity constraints during the system
design, which guarantee that the logical behaviour of the
system is independent of the communication delays. The
paper presents a descriptive model for the specification of
distributed systems, and defined system properties which
imply regular system behaviour. A sufficient condition for
checking the regularity of a given system is given. The appli-
cation of the concepts presented is illustrated by several
examples.

Keywords: Distributed synchronization, communication
delays, deadlocks, mutual exclusion, distri-
buted system modules, distributed system
design, regularity constraints, synchronization
primitives, distributed system verification.

Gregor V. Bochmann received the
Diplom in physics from the Univer-
sity of Munich, Munich, Germany, in
1968, and the Ph.D. degree from
McGill University, Montreal, P.Q.,
Canada, in 1971. He has worked in
the areas of programming languages
and compiler design, communication
protocols, and software engineering.
He is currently Associate Professor in
the D~partement d'Informatique,
University of Montreal. His present

work is aimed at design methods for communication proto-
cols and distributed systems. In 1977-1978 he was a Visiting
Professor at the Ecole Polytechnique F6d6rale at Lausanne,
Switzerland.

I This work was performed while the author was on leave at
the D6partement de Math6matiques de l'Ecole Polyteehni-
que F~d6rale de Lausanne, Suisse. An earlier version of this
paper has been presented at the Berkeley Workshop, San
Fransisco, August 1978, under the title "Synchronization
in distributed system modules".

© North-Holland Publishing Company
Computer Networks 3 (1979) 36-43

1. Introduct ion

It is common practice to subdivide complex
systems into a number o f modules. Usually, a module
is characterized by a given data structure and a set o f
operations that may be executed on this dala. Such a
module may be considered an instance of an abstract
data type. Seen from the outside, a data type is
characterized by the operations that may be invoked
on the module by other modules, i.e. the order in
which these operations may be executed and the
parameter values exchanged. The other point of view
considers the implementat ion o f these operations
inside the module, for which it is usually necessary to
specify the data structures of the module and the

procedures that implement the externally available
operations. There may also be some internal book-
keeping operations invoked inside the module.

Most systems contain some kind of parallel activi-
ties. Thus, in principle, it is possible for the opera-
tions of a given module to be invoked by several
other modules, in an arbitrary order. However, many
module types only function correctly if the opera-
tions are invoked in a specific order. Therefore, the
correct synchronization of the module operations
must be enforced in some appropriate way, perhaps
by delaying the calling modules. Many different tools

have been developed for the specification of syn-
chronization mechanisms, for example semaphores,
monitors, conditional critical regions, conditions on

history counter variables [1], etc. In this paper, we
use a kind of conditional critical region (see
section 2).

1.1. The problem considered

In this paper we consider the problems that arise
from the distribution of a module over several
physical components, which may be located at
different places. Because o f the communicat ion delay
between the different components, the sharing of

information between the different components of a
module becomes more complicated. For example,
reading a variable in a distant component generally
involves a delay implying that the variable may
already have been updated when the value read is
obtained. Another example is the potential deadlock

36

G. V. Bochmann /Distributed synchronization and regularity 37

resulting from call collision, which occurs when two
communication stations call one another at the same
instant and, due to the transmission delay, each finds
the other one busy. In a local context, these problems
may be resolved by the introduction of critical
regions for the access of shared variables, but this
approach is difficult in a distributed context.

The situation is complicated by the fact that the
different components may proceed with their local
processing at a varying speed independent of one
another. To obtain a meaningful system behaviour, it
is necessary to introduce some kind of synchroniza-
tion between the different components• A given
communication protocol between two communicat-
ing components usually describes a specific
synchronization behaviour. This paper considers the
more general problems of describing an arbitrary
synchronization scheme between several (possibly
more than two) asynchronous components, and
analysing its behaviour in the presence of varying
communication delays•

2. The descriptive model

In the following we give only a brief explanation
of the descriptive model used for the specification of
distributed modules since it is similar to models
described elsewhere [2,3].

2•1. The basic model

In the basic model, the distribution aspect is
ignored. A module is characterized by a set of vari-
ables (declared within the module) and a set o f
operations. The (internal) state of the module is
characterized by the values of these variables. Each
operation defines a set o f possible state transitions.
They are characterized by the "enabling predicate" o f
the operation, which is a boolean function of the
variables, and the "act ion" of the operation, which
updates the variables and is usually written in some
high-level programming language. Only when the
enabling predicate is true may the operation be fired,

1.2. The approach

We propose the concept of "regularity" for the
analysis o f distributed system modules• Broadly
speaking, a distributed module is regular if its logical
behaviour is independant o f the internal communica-
t ion delays. The analysis of a regular module is
simplified. A proof of the correct behavior of a
module which is known to be regular may be made
by assuming negligeable communication delays,
which is equivalent to assuming a non-distributed
implementation. Therefore the analysis is reduced to
the non-distributed case. However, the problem
remains how to decide whether a distributed module
is regular or not. A sufficient condition for regularity
is given below, which applies in many cases.

In order to clearly specify and analyse a distri-
buted system, it seems necessary to describe it in
some convenient formalism. For this purpose we have
adopted a particular descriptive model which avoids
the use of variables shared at a distance, but uses
instead actions, executed in a given component ,
which may be initiated by remote components, as
explained in section 2. In section 3 the concept o f
regularity is formally defined in terms of this model,
and a sufficient condition for regularity is given.
These ideas are applied to several simple examples in
section 4.

Resource Module (the resource manager)
Variables

free: boolean;
Operations

request;
when free
do free .'= false;

release;
free := true;

Initially
free := true;

User i Module (the i4h user module of the resource)
Variables

state: (start, reserved, done);

Operations
request;

when state = start
do begin Resource.request;

u sage;
when state = reserved
do begin ...{use resource};

release;
when state = done
do begin Resource.release;

Initially
state := start; ...

state := reserved end;

state := done end;

state := start end;

Fig. 1. Example of mutual exclusion between N User modules
accessing a shared resource.

38 G.F. Bochmann / Distributed synchronization and regularity

i.e. the associated action is executed, thus performing
a state transition. We assume mutual exclusion
between the firing of different operations.

To illustrate this basic model, we show in Fig. 1 an
example of mutual exclusion between N User
modules accessing a shared resource. We use a
notation similar to Pascal [4] to specify the variables,
enabling predicates, and actions. An operation is
written in the form "when (enabling predicate) do
(action)". We write name. operation to indicate the
initiation of an operation in another module or
component. To control the resource access, the
example uses the customary request and release
operations which must be called in a consistent order
by the user modules. A cyclic order of execution is
enforced for each User module by the state variable.

2.2. The distributed model

We will now consider a module to be distributed
over several physical "components". A typical situa-
tion is shown in fig. 2, where the module A is distri-
buted over the physical components, X, Y, Z (pos-
sibly placed in different geographical locations).
Some operations of the module are invoked by the
modules B and D in components X and Z, respec-
tively. A, in turn, invokes some operations of the
module C, which is completely inplemented in com-
ponent Y. It also invokes operations of submodules
located in components X and Z.

For the description of such distributed modules,
we propose in the following a distributed model
related to the basic model above. The model is a kind
of language containing simple primitives for specify-
ing synchronization and interactions between actions
executed in the different components of a module.
To deal with the distribution aspect we introduce the
following conventions (in addition to those of the
basic model):

,.odu o, --_
, i - - - - - - - - 1

- L.__A.2 ~

component Y

! !

Fig. 2

module B

(a) Each variable of a distributed module is located in
a single component.

(b) Each operation is assigned to a single component,
where it is initiated (either internally by the
module, or in interaction with another module),
and its enabling predicate depends only on
variables located within that component.

(c) The action of an operation is partitioned into a
certain number of localized actions, each updating
the local variables of a particular component, such
that the new values depend only on the previous
values of the local variables of that component
and (possibly) on the variable values of the initiat-
ing component. We call "local action" an action
localized in the initiating component, and
"remote action" an action localized in another
component.

(d)Mutual exclusion between local and remote
actions of different operations is ensured
separately for each component.

(e) When an operation is fired, its local action is exe-
cuted immediately, and each corresponding
remote action is executed some finite time later
(possibly using the values of the variables in the
initiating component as updated by the execution
of the local action). During the intermediate time
intervals, other actions may be executed on the
different components.

It is clear that an implementation of this model may
be obtained by using an inter-component communi-
cation subsystem for the transfer of messages. When
an operation is fired in the initiating component, a
message, containing the identification of the opera-
tion and the necessary variable values of the initiating
component, is sent to each component where a
remote action must be executed. Depending on the
message transmission service provided by the com-
munication subsystem, different varieties of point (e)
above may be considered: (el) as above (message
delivery is guaranteed); (e2) as above, but some remote
actions may never be executed (messages may be
lost). In addition sequentiality of the message
delivery and execution of remote actions may or may
not be guaranteed for certain pairs of system com-
ponents. In general, these characteristics of the
communication subsystem have a strong impact on
the behavior of the distributed system module.

In the above discussion, we have considered only a
single system module, such as for example module A
of the figure above. We have ignored the fact that a
given physical system component will, in general,

G. V. Bochmann / Distributed synchronization and regularity 39

Sender Component
Variables

length: 0..N;
Operations

enter(data: block);
when length < N
do begin

length := length + 1 ; } local action
Receiver.length := Receiver.length + 1 ;
Receiver.buffer.put(data) }remote action

end;
Initially

length := 0;

Receiver Component
Variables _

length: 0..N;
Buffer: queue of block; {submodule with the primitive operations put, get and empty }

Operations
rernove(var data: block);

when length > 0
do begin

length := length - 1 ; } local action
buffer .get(data);
sender.length := sender.length - 1 } remote action

end;
Initially

length := 0;
buffer.empty;

Fig. 3. Implementation of a queuing module distributed over two components.

contain components o f several modules which may
interact locally through external module operations.

As in example, we show in Fig. 3 an implementa-
tion of a queuing module distributed over two com-
ponents. It may be used to transfer data from the
sender component to the receiver component. It is
derived from a straight-forward non-distributed
queuing module by duplicating the variable length in
both components, and assigning the buf fer variable to
the receiver component. This corresponds to the
design strategy of assigning a variable to the com-
ponent where it is used, possibly creating several
copies o f the same "logical variable" in different com-
ponents. (We note that the module assumes sequen-
tial message transmission from the sender to the
receiver component, but not necessarily in the
opposite direction).

3. Regular systems

In this section we consider a certain class o f con-
straints which we call regularity, which may be satis-

fled by distributed systems, described in the model
outined above, and which, when satisfied, allow a
logical system validation ignoring the possible
message transmission delays between the com-
ponents. The following subsection explains some use-
ful concepts and notations needed for the following
discussion.

3.1. Traces o f operation execution

We consider a system module with a certain set of
possible operations. The (local and remote) actions o f
these operations are identified by action symbols. A
"trace" is a string o f action symbols, and indicates a
possible execution sequence for these actions. A trace
contains all local and remote actions o f the
operations in the order in which they are executed, as
seen by a hypothetical outside observer. Given that
the module is in a certain internal state, which is
characterized by the values of its local variables and
the set o f "outstanding" remote actions, only certain
actions may be executed next. A local action, initiat-
ing a new operation, may only be executed when the

40 G. V. Bochmann /Distributed synchronization and regularity

enabling predicate of the operation is satisfied. A
remote action may only be executed when it is out-
standing, i.e. when the corresponding local action has
been executed previously. This limits the set of
possible traces for a given module.

We assume that each action has a deterministic
effect on the local variables of the executing com-
ponent. Then each given trace which is possible from
a given state s of the module leads to a particular
module state, which we write (s)o. We say (s)o is
"defined" iff e is a possible trace starting from s. We
say that two states s and s' are "equivalent" iff for all
traces a, s(a) is defined iff (s ')a is defined, i.e. the
same traces are possible from s and s'.

3.2. Regularity

The condition (a) implies that each operation
sequence that is possible in the presence of arbitrary,
but finite communication delays is also possible in
the absence of delays. Therefore delays cannot
introduce any "new" behaviour which would not be
possible in the case of negligeable delays. On the
other hand, condition (b) implies that all operation
sequences that are possible in the case of negligeable
delays are also possible in the presence of delays.
Therefore the deadlock and liveness properties of the
module are independent of the delays. We may
conclude that the behaviour of the module, as
characterized by the possible operation sequences
that may occur, is independent of any (finite)
communication delays between the different module
components.

As mentioned above, for each possible trace the
remote actions are executed sometimes after the
corresponding local actions. If the remote actions are
executed immediately after the corresponding local
actions, one obtains traces of the form aLaRbL bO)
b(~) ...b(R n) CLdLdR... (where we distinguish local and
remote actions by the indexes L and R respectively,
and assume that the operation c has no remote
action, the operations a and d have one, and b has n
remote actions). We call such traces "delayless", since
all possible traces are of this form in the case that the
communication delays between the components can
be ignored.

Given a module state s with no outstanding remote
actions, and a possible trace o starting from this state,
we write 6 for the "corresponding delayless" trace,
defined to be the delayless trace which contains the
same local actions as o, and in the same order as o.
For example, the delayless trace above is the corre-
sponding delayless trace of aLbL CLdLdR aR bO) b ~)
...b(R n), as well as of aLa R bLC L dLb(~) dRb~) ...b~),
and many others.

As far as the logical behaviour of the module is
concerned, a trace and its corresponding delayless
trace are considered equivalent, since both define the
same operation sequence. This is the basis for the
following definition of regularity which corresponds
to the approach explained in the Introduction.

Definition: A distributed module is "regular" if for
any trace o such that (so) o is defined, where So is tile
initial state of the module, the following holds:
(a) (So) # is def'med, and
(b) (so) 0 is a state equivalent to (so)o.

3.3. Commutation relations and regularity condition

We give in the following a sufficient condition for
a system to be regular. This condition may be
checked by considering separately each component of
the module, ignoring the particular form of intercom-
ponent communication. Therefore the analysis is
relatively simple.

Def'mition: An action a "semi-commutes" with an
action b if for all traces o such that (So)O b a is
defined, (So)O b a is a state equivalent to (So)O a b. We
say that a "semi-commutes strongly" with b if for
all states s such that (s) b a is defined, (s) a b is a state
equivalent (s) b a.

We note that any action of a given component semi-
commutes strongly with any action of a different
component , except for a remote action with the
corresponding local action.

Definition: A remote action of a module component
is "regular" if it semi-commutes with all actions of
the same component.

Lemma: A remote action a R is regular i f f for any
possible trace o f the form alaLo2aR, where a L is the
local action corresponding to aR, (So] OlaLo2a R is a
state equivalent to (So} alaLaRO2. (The proof is
straightforward).

Proposition: I f all remote actions of a module are
regular then the module is regular. (The proof, using
the lemma above, is straightforward).

G. V. Bochmann /Distributed synchronization and regularity 41

4. Examples

In this section we consider several examples of
distributed modules, and analyse their regularity
using the tools developed in the preceding section.

4.1. The queuing module

We consider the distributed queuing module of
section 2.2. To check the applicability of the above
Proposition, it is sufficient to investigate the com-
mutat ion of enterR with removeL, and removeR with
enter L. We find strong semi-commutation in both
cases. Therefore the module is regular.

4.2. An erroneous mutual exclusion algorithm

An adaptation of the mutual exclusion algorithm
o f section 2.1. to a distributed environment is not
easily obtained. If the strategy of variable assignment
and duplication, which was successful in the case of
the queuing module, is applied in this example we
obtain a distributed module such as in Fig. 4. (the
variable free is duplicated). It is easy to see that this
module is not regular. For example, the trace

User i Component
Variables

state: (start, reserved, done);
free: boolean;

Operations
request;
when state = start and free
do begin

state := reserved;) local action
free := false;
for all~ ~ i do userj.free := false;)remote actions
end;

usage;
when state = reserved
do begin ... {use resource}; state := done end;

release;
when state = done
do begin

state := start;) local action
free := true;
for all~ ~ i do userj.free:=true;)remote actions

end;
Initially

state := start; free := true;

Fig. 4. Distributed module.

userx.requestL user2,requestL userx~,equest~) is a
possible trace, whereas the corresponding delayless

e .r (2) • trac user1 ~equest L userl equest R user2 ¢equest L ~s
not, which is a contradiction to condition (a). (We
note that user~.request(~) is the remote action o f the
request operation initiated in the user1 component
executed in the user2 component) . By the way, this
also results in a violation of the mutual exclusion in
the case of communication delays, and is an example
of a "new" behaviour introduced by non-negligeable
delay.

4.3. A centralized mutual exclusion algon'thm

Similar to the algorithm of section 2.1, the distri-
buted resource sharing module of Fig. 5 uses a
centralized resource manager. Mutual exclusion is
maintained by a rather more complex exchange of
"messages" between the user components and the
manager.
To prove the regularity of the algorithm we consider,
as in section 4.1., the commutat ion of each remote
action with the local actions executed in the same
component. This leads to the following pairs of
actions:
- alloeateR commutes with request L strongly,
- alloeateR semi-commutes with usageL strongly,
-- allocateR semi-commutes with releaseL (there is no

possible trace of the form "... releaseL allocateR"),
-- requestR semi-commutes with allocateL strongly,
-- releaser semi-commutes with allocateL (there is no

possible trace of the form "... allocate L releaseR").

Therefore the condition o f the Proposition is satis-
fied, and the module is regular.

4.4. A distributed mutual exclusion algorithm

Dijkstra has described self-stabilizing algorithms
with distributed control [5], which provide mutual
exclusion in the stabilized situation. His solution with
K-state machines may be re-written in the form given
in Fig. 6, where nothing is assumed about the initial
values of the variables, and • stands for addition
modulo N. It can be shown [6] that the algorithm is
self-stabilizing, which means that for arbitrary initial
values of the local variables S and L in the different
components the system will enter, after a finite
number of operations, a "stable" state such as for
instance the state with L = S = 0 in all components.

To show the regularity of the algorithm, we

42 G.V. Bochmann /Distributed synchronization and regularity

Resource Component (the resource manager)
Variables

free: boolean;
requests: queue of userid; {user identification i.e. 1..N}

Operation
allocate;

var next: userid;
when free and not empty (requests)
do begin

free := false; }local action
requests.get (next);
next.state := reserved;

end; }remote action

Initially
free := true;
requests .empty;

User i Component
Variables

state: (start, reserved, done);

Operations
request:

when state = start
do begin

Resource.requests.put(myid) }remote action
end;

usage;
when state = reserved
do begin

. . . {use resource}
state := done

end;
release;

when state = done

do begin } local action
state := start;
Resource.free := true; }remote action

end;
Initially

state ".= start;

Fig. 5. Distributed resource sharing module.

consider the following pairs of actions:
- send-s ta tus R and usage L (for i = 0),
- send-s ta tusR and usageL (for i > 0), and
- send-s ta tusR and send-s ta tusL (the remote action is

executed in the same component as the local
action, but belongs to a different operation).

The last pair commutes strongly. The first two pairs
semi-commute (assuming as initial state L = S -- 0 in
all components), but not strongly, i.e. not during the
self-stabilization phase when nothing can be assumed
about the variable values. Once the system is
stabilized, the semi-commutation relation ensures
regularity.

User i Component
Variables

S, L: 0..K - 1 {own machine state, and latest knowledge
about the state of the left neighbour}

Operations
send-status;

do useri~ 1.L := S; } remote action
usage (for i = 0);

when L = S
do begin

. . . {use resource};
S : = (S + l) modK

end;
usage (for i > 0);

when L ~ S
do begin

. . . {use resource};
S:=L

end;

Fig. 6. Dijkstra's solution with K-state machines.

5. Concluding remarks

The communication delays between the different
components of a distributed system often cause
problems for the logical consistency of the overall
system behaviour. The ideas discussed in the paper
suggest how to eliminate these problems by observing
certain regularity constraints during the system design
which guarantee that the logical behaviour of the
system is independent of the communication delays.
We believe that the concept of regularity may lead to
a better understanding of the problems of distributed
systems, to the design of simpler systems and more
reliable implementations. The paper presents a
descriptive model for the specification o f distributed
systems and a simple condition which guarantees the
regular behaviour of the system. Several examples are
given which show how these concepts apply for some
simple systems. More work is required to study the
applicability of the ideas for larger and more complex
systems.

The concepts developed in this paper are related to
many algorithms designed for distributed imple-
mentation, in particular communication protocols,
routing algorithms in data networks, and synchroni-
zation algorithms for distributed data bases.

In a recent paper [7] Lamport presented some
synchronization algorithms which rely on a particular
property of shared multi-digit variables, namely that
the value read is always smaller than or equal to the

G. V. Bochmann /Distributed synchronization and regularity 43

last value written. As in the case of synchronization
based on counter variables [1], he complies with the
restriction that the values o f the shared variables are
never decreased. Assuming individual increments are
always one, this leads to the situation where the value
read from a shared multi-digit variable is more or less
"old". The same situation holds in our distributed
model where the variables o f distant components
contain "old" values until they are updated by
remote actions. When re-written in our model, with
an appropriate distribution of variables, most of
Lamport 's algorithms turn out to be regular, and may
therefore be used in a distributed context, although
not originally intended for this purpose.

While the regularity condition given in this paper is
particularly simple to check, it is certainly not satis-
fied by all regular systems. We know of a simple data
transmission protocol with message numbering and
retransmission after time-outs (for recovering from
lost messages) which is essentially regular, but has
some non-regular remote actions. Some more power-
ful regularity condition may be useful for proving the
regularity in more general situations.

It would be very valuable to have design methods
for building distributed system modules which are
known to be regular. Although we mention the
strategy of duplication of variables for obtaining a
distributed module from a non-distributed design, a
strategy which works for the example o f section 2.2,
but does not for the case o f section 4.2, we do not
deal with this question in the paper. However, Vissers
[8] described several methods to turn a system,
designed for negligeable communication delays and
therefore in general not regular, into what we call a
regular system. He considers a "turn method" which
results in a system where each component in turn
does an operation, similar to the mutual exclusion
algorithm of section 4.3. He also considers "freeze"

and "grant" methods which result in systems where
two components interact in an inherent asymmetry.

Other interesting questions not covered in this
paper are systematic methods for handling message
losses, non-sequential message delivery, and failures
of system components.

Acknowledgements

I would like to thank Jan Gecsei and Chris Vissers for
interesting discussions related to this topic, and Marcel Bert-
houd, Andr6 Schiper, Simon Waddell and Jim Gray for sug-
gesting many improvements of different versions of this
paper.

References

[1] P. Robert and J.P. Verjus, "Toward autonomous descrip-
tions of synchronization modules", Proc. IFIP Congress
1977, pp. 981-986.

[2] G.V. Bochmann and J. Gecsei, "A unified method for the
specification and verification of protocols", Proc. IFIP
Congress 1977, pp. 229-234.

[3] E. Andr~ and P. Decitre, "On providing distributed appli-
cation programmers with control over synchronization",
Proc. Computer Network Protocols Symposium, Universit~
de Liege, Febr. 1978, pp. DI-1 to DI-6.

[4] K. Jensen and N. Wirth, "Pascal user manual and report",
Springer Verlag, Berlin, 1974.

[5] E.W. Dijkstra, "Self-stabilizing systems in spite of distri-
buted control", Comm. ACM 17, 11 (Nov. 1974), pp.
643-644.

[6] J. Mossi~re et al., "Sur l'exclusion mutueUe dans les
syst~mes informatiques", Internal report No 75, IRISA,
Universit~ de Rennes, France, Oct. 1977.

[7] L. Lamport, "Concurrent reading and writing", Comm.
ACM 20, 11 (Nov. 1977), pp. 806-811.

[8] C.A. Vissers, "Interface: Definition, design and descrip-
tion of the relation of digital system parts", Technische
Hogeschool Twente, The Netherlands, 1977 (section
5.2).

